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Abstract

With the rise of social media, the spread of fake news has
become a significant concern, potentially misleading pub-
lic perceptions and impacting social stability. Although deep
learning methods like CNNs, RNNs, and Transformer-based
models like BERT have enhanced fake news detection, they
primarily focus on content, overlooking social context dur-
ing news propagation. Graph-based techniques have incorpo-
rated this social context but are limited by the need for large
labeled datasets. Addressing these challenges, this paper in-
troduces GAMC, an unsupervised fake news detection tech-
nique using the Graph Autoencoder with Masking and Con-
trastive learning. By leveraging both the context and content
of news propagation as self-supervised signals, our method
negates the requirement for labeled datasets. We augment the
original news propagation graph, encode these with a graph
encoder, and employ a graph decoder for reconstruction. A
unique composite loss function, including reconstruction er-
ror and contrast loss, is designed. The method’s contributions
are: introducing self-supervised learning to fake news detec-
tion, proposing a graph autoencoder integrating two distinct
losses, and validating our approach’s efficacy through real-
world dataset experiments.

Introduction
The rapid development of social media has brought immense
convenience to people’s lives. However, it has also served
as a breeding ground for the widespread dissemination of
fake news (Wang et al. 2023). The proliferation of fake news
has become a major issue in the digital media era, as it
could mislead public perception, affect social stability, and
even threaten national political security (Zhou and Zafarani
2020). Therefore, the detection of fake news has become a
pressing issue that requires swift and effective solutions.

To automatically identify the ever-growing fake news,
various approaches have been proposed. Traditional fake
news detection methods primarily involve manually design-
ing rules to extract news features and then employing clas-
sifiers to categorize these features. However, manually de-
signing rules to extract valuable fake news features could be
labor-intensive, and may not always capture the intricacies
associated with deceptive content (Zhou and Zafarani 2020).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

: XXX
: XXX

: XXX
: XXX

: XXX
: XXX

D
etection  
m

odel

: XXX
: XXX

: XXX
: XXX

: XXX
: XXX

D
etection  
m

odel

: XXX
: XXX

: XXX
: XXX

(a) Manually Labeled

: XXX
: XXX

D
etection  
m

odel

(b) Unlabeled

: XXX
: XXX

: XXX
: XXX

: XXX
: XXX

Figure 1: Difference between supervised and unsupervised
methods for fake news detection. (a) Existing methods
largely rely on manually labeled datasets. The process of
manually annotating data is time-consuming, expensive, and
often requires expert knowledge to ensure accurate labeling.
(b) In contrast, our proposed method, GAMC, is based on
unsupervised learning and can directly use unlabeled data
for fake news detection. This eliminates the need for costly
and time-consuming manual data annotation.

In recent years, deep learning has played an increasingly
important role in rumor detection, as it can automatically
learn and extract underlying patterns and features from large
amounts of data, thereby improving the accuracy and effi-
ciency of detection mechanisms (Shu et al. 2017). For ex-
ample, Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN) have been utilized to learn
local and temporal dependencies in text data respectively
(Li et al. 2021b). Furthermore, Transformer-based models,
such as BERT, have been employed to understand the con-
text and semantic relationships in news articles better (De-
vlin et al. 2019). These models, pre-trained on large cor-
pora, have shown remarkable success in capturing the com-
plex linguistic characteristics of fake news (Wu et al. 2023).
However, these methods primarily analyze the content of the
news, and do not consider the social context information in
the process of news propagation (Yuan et al. 2019).

Recognizing this oversight, researchers have proposed
graph-based methods that incorporate social context into the
detection process (Min et al. 2022). These methods model
the spread of news as a graph, capturing the intricate in-
teractions and relationships among various entities involved
in news propagation. However, these supervised methods
necessitate large labeled datasets for training as Figure 1
(Fang et al. 2023). The collection and labeling of extensive
datasets can be a laborious and resource-intensive task, pos-
ing a significant challenge for real-world applications (He
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et al. 2021).
To address these issues, this paper proposed an unsuper-

vised fake news detection method, GAMC, that employs a
Graph Autoencoder with Masking and Contrastive learning.
By employing the context and content of the news propa-
gation process as the self-supervised signal, along with a
feature reconstruction and contrasting task, this method cir-
cumvents the need for labeled datasets. Specifically, we first
perform data augmentation on the original news propaga-
tion graph, which includes random node feature masking
and edge dropping, to create two enhanced graphs. Then, we
employ the graph encoder to encode these enhanced graphs,
yielding the graph-level representation vector. These vectors
not only capture the global characteristics of the graph but
also contain information about the news propagation pro-
cess, both its context and content. Once the model is trained,
these graph-level representation vectors can be directly used
for the task of fake news detection. Next, we use the graph
decoder to map the graph-level representation vector back to
the original input, resulting in a reconstructed graph vector.
This step is designed to teach the model how to reconstruct
the original input from the graph-level representation vector,
thus helping the model to better understand and learn the la-
tent patterns of news propagation. Finally, we design a com-
posite loss function composed of reconstruction error loss
and contrast loss. The reconstruction error loss aims to min-
imize the discrepancy between the reconstructed graph rep-
resentation and the original graph representation, enabling
the graph autoencoder to better learn the latent features of
the propagation graph. The contrast loss, on the other hand,
ensures that the representations of the two augmented graphs
generated from the same propagation graph are as similar as
possible after reconstruction.

The contribution of this paper can be summarized as fol-
lows:

• Self-supervised learning is introduced into the domain of
fake news detection, eliminating the dependence on la-
beled data, which makes the method more applicable to
real-world scenarios.

• We proposed a graph autoencoder with reconstruction er-
ror loss and contrast loss. The reconstruction error loss
aims to minimize the discrepancy between the recon-
structed and the original graph representations, while the
contrast loss ensures that the representations of two aug-
mented graphs, both derived from the same propagation
graph, are as similar as possible after reconstruction.

• We conducted a series of experiments on real-world
datasets, demonstrating the effectiveness of the proposed
method.

Related Work

To provide a comprehensive understanding of the cur-
rent landscape of our work, we review two primary areas:
fake news detection methods and generative self-supervised
graph learning techniques.

Fake News Detection
The task of fake news detection can be viewed as a classifi-
cation problem. The classification process relies on various
factors such as the content of the news, the spread pattern,
user reactions, and other related data.

Recently, deep learning has been taking an increasingly
prominent role in fake news detection. Ma et al. developed
a novel recurrent neural network (RNN) based method for
rumor detection on microblogging platforms, which outper-
formed traditional models using hand-crafted features (Ma
et al. 2016). Considering the different events, EANN is pro-
posed to effectively extract event-invariant features from
multimedia content, thereby enhancing the detection of fake
news on newly arrived events (Wang et al. 2018). To in-
troduce extra knowledge for detecting fake news, Wang et
al. proposed a unified framework named KMGCN, using a
graph convolutional network to extract textual information,
knowledge concepts, and visual information (Wang et al.
2020). However, these methods primarily focus on the con-
tent of news, which may fall short in distinguishing ambigu-
ous fake news that is crafted to resemble real news.

Building on this, researchers begin to explore the po-
tential of leveraging social context information in the pro-
cess of news propagation. Generally, the social context in-
cludes information such as forwarding relationships, com-
ment content, and user preferences, which can provide ad-
ditional insight into how news spreads in social networks.
Bian et al. introduced the bi-directional graph convolutional
network that simultaneously captures top-down propagation
and bottom-up dispersion features on social media, which
enhances traditional deep learning approaches (Bian et al.
2020). To capture rich structural information, GLAN models
relationships among source tweets, retweets, and users as a
heterogeneous graph, then effectively encodes both local se-
mantic and global structural information for rumor detection
(Yuan et al. 2019). Considering the influence of user prefer-
ences in news propagation, UPFD employs users’ historical
posts as an endogenous preference, and the news propaga-
tion graph as an exogenous context, integrating internal and
external information to better identify disinformation (Dou
et al. 2021).

However, these supervised methods depend on large la-
beled datasets. The acquisition of these labeled datasets of-
ten requires considerable time, effort, and domain expertise.

Generative self-supervised Graph Learning
Generative self-supervised graph learning leverages the
richly structured data in graphs to learn meaningful repre-
sentations without the need for explicit labels (Wu et al.
2021). To generate diverse and realistic graphs, Li et al. in-
troduced GraphRNN, a deep autoregressive model that ad-
dresses the challenges of graph generation and representa-
tion learning (You et al. 2018). Kipf et al. developed a novel
Graph Auto-Encoder (GAE) based method that learns to en-
code a graph into a lower-dimensional space and then de-
code it back into its original structure, outperforming tradi-
tional models using hand-crafted features (Kipf and Welling
2016). Considering that most GAEs lack the ability to recon-



struct node features, some work has been dedicated to recon-
structing masked features, thereby enhancing the efficiency
of self-supervised GAEs in graph representation learning for
classification tasks (Hou et al. 2022). Our work is inspired
by the graph mask autoencoder, and we developed a self-
supervised graph autoencoder to obtain representations of
news for the task of fake news detection.

Problem Definition
In this paper, the task of fake news detection is to de-
sign an automatic discriminator that can learn latent fea-
tures from a set of unlabeled news. This learned knowledge
can then be used to predict the authenticity of unseen news
instances. Specifically, the news dataset can be defined as
D = {D1, D2, . . . , Dn}, where each Di represents a single
news instance in the dataset. Each news instance Di can be
modeled as a graph based on its corresponding propagation
process.

Our aim is to learn an unsupervised function, f , as defined
below:

f : D → Y, (1)

where D represents the set of graph representations of the
news instances and Y ∈ {F,R} (i.e. Fake News or Real
News) denotes the set of possible outcomes.

Method
In this section, we introduce the GAMC method for fake
news detection tasks, designed to capitalize on the inherent
context and content of the news propagation process to func-
tion as a self-supervised signal, thereby bypassing the need
for labeled datasets. As illustrated in Figure 2, the following
parts will detail the procedure of employing GAMC for fake
news detection, including data augmentation, graph encod-
ing, graph decoding, and the composite loss function.

Data Augmentation
For the GAMC method, data augmentation is an essential
first step. It aims to generate augmentation data by trans-
forming the original graph, without altering the underlying
semantic context of the news propagation process.

To begin with, each piece of news is modeled into a
graph G = (V,A,X), based on the forwarding relation-
ship. V = {vn, vu} represents the set of nodes, where vn
is the news node, and vu signifies the user nodes that for-
ward the news. A represents the adjacency matrix, which
embodies the forwarding relationships. X is the feature ma-
trix. The node feature for the news nodes vn is the news con-
tent embedding, encoded by a pre-trained BERT model, and
the node feature for the user nodes vu is derived from their
historical posts, as described in (Dou et al. 2021). The node
feature of node i is denoted as xi. This graph-based repre-
sentation can provide a structured view of the news content,
making it easier for our model to extract and learn meaning-
ful features. This graph-based representation can provide a
structured view of the news content, making it easier for our
model to extract and learn meaningful features.

Following the construction of the graph, the data augmen-
tation process employs two strategies: random node feature
masking and edge dropping.

Random node feature masking is the random feature elim-
ination of the nodes when the training begins. Let Vm ⊂ V
be a subset of nodes randomly selected for masking. For
each node in Vm, we replace its feature vector with a special
mask token, denoted as x[MASK] ∈ RD. Then, the masked
feature matrix X̂ can be defined as:

x̂i =

{
x[MASK], if vi ∈ Vm

xi, if vi /∈ Vm,
(2)

where x̂i is the augmentation feature of node i, the aug-
mented feature matrix X̂ is constructed by x̂i.

Edge dropping is the second strategy used for data aug-
mentation. This method disrupts the connectivity of the
graph by randomly dropping some edges before training.
EDrop is the edge set obtained by randomly sampling from
the original edge set E, and ADrop denotes the adjacency
matrix of EDrop. Then the augmented adjacency matrix
Â could be calculated as Â = A − ADrop. Through the
above operations, the augmented graph can be represented
as Ĝ = (V, Â, X̂). Each of these strategies is applied twice
to the original graph, resulting in two distinct augmented
graphs, namely Ĝ1 = (V, Â1, X̂1) and Ĝ2 = (V, Â2, X̂2).

These data augmentation strategies not only ensure the
model’s effectiveness in the face of complex news propaga-
tion patterns but also facilitate the model’s learning of the
context and content information of the propagation process.

Graph Encoding
Following the data augmentation process, the second in-
tegral component of the GAMC method is graph encod-
ing. The purpose of this step is to transform the augmented
graphs into a compact and meaningful latent space represen-
tation.

The graph encoder in our method is a two-layer Graph
Isomorphism Network (GIN) (Xu et al. 2019), which is de-
signed to process the augmented graph Ĝ = (V, Â, X̂) and
generate the graph-level representation vectors. The GIN is
selected due to its capacity to capture the topological struc-
ture and node features of a graph, making it suitable for the
task of fake news detection.

Given an augmented graph Ĝ, the GIN encoder operates
as follows. At the l-th layer, the hidden feature vector h(l)

i
for node i is updated using the aggregation function:

h
(l)
i = MLP

(1 + ϵ(l)) · h(l−1)
i +

∑
j∈N (i)

(
h
(l−1)
j

) ,

(3)
where N (i) is the set of neighboring nodes of i, and h

(0)
i =

x̂i is the input feature vector of node i. This process is itera-
tively conducted for all nodes until the l-th layer.

After two layers of information propagation, the GIN en-
coder outputs a set of node embeddings H for all nodes in
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Figure 2: Overview of the GAMC Fake News Detection Method. The original news propagation graph is first augmented
through random feature masking and edge dropping, generating two perturbed graphs. These graphs are then processed through
a graph encoder to generate latent representation vectors. A decoder subsequently maps these vectors back to their input space,
producing reconstructed feature vectors. Minimizing the composite loss function facilitates the effective learning of the propa-
gation graph’s latent features by the autoencoder and ensures the similarity of the reconstructed features across the augmented
graphs.

the graph. Through the aforementioned encoding step, we
can obtain the nodes’ latent representations, H1 and H2, for
the two augmented graphs Ĝ1 and Ĝ2. These node embed-
dings will then be pushed into the graph decoder.

While the model has been trained, the graph-level repre-
sentation vectors obtained from the GIN encoder can also be
used directly for news classification tasks. Node embeddings
from the encoder are pooled together to generate a graph-
level representation vector F for the entire graph:

F =

n∑
i=1

hi. (4)

This graph-level representation vector F captures the
overall information of the graph, including both the struc-
tural and content information, which are essential for the
downstream task of fake news detection.

Graph Decoding
The third core component of the GAMC method is graph
decoding. The goal of this step is to map the latent graph-
level representation vectors back to the input, namely to
obtain reconstructed feature matrices. Before decoding, we
perform a re-mask operation on the masked nodes, forcing
the masked nodes to aggregate from their neighbors in order
to reconstruct their initial features. For each node in Vm, we
replace its representation with a special mask token, denoted

as h[REMASK] ∈ RD. The re-mask representation ĥi of vi
can be described as:

ĥi =

{
h[MASK], if hi ∈ Vm

hi, if hi /∈ Vm
. (5)

The re-masked latent representation Ĥ is constructed by
ĥi. Correspondingly, after the re-mask operation, the hidden
representations of graphs Ĝ1 and Ĝ2 can be denoted as Ĥ1

and Ĥ2. Then, we feed the hidden representations of the two
graphs into the graph decoder, obtaining the reconstructed
features X ′

1 and X ′
2.

Loss Function
The loss function in GAMC is to guide the learning process
in a way that the difference between the original and recon-
structed graphs is minimized, and the contrast between the
two reconstructed graphs derived from the same propagation
graph is minimized. We define the loss function in two parts:
the reconstruction loss and the contrastive loss.

The reconstruction loss aims to ensure the fidelity of the
reconstructed feature matrices X ′

1 and X ′
2 to the original fea-

ture matrices X1 and X2. We use the Mean Squared Error
(MSE) between the original and reconstructed feature matri-
ces as reconstruction loss:

Lrec = 1

n

n∑
i=1

(
|X1 −X ′

1|22 + |X2 −X ′
2|22

)
, (6)



where n is the number of samples. By minimizing this loss
in the training phase, the model could produce reconstructed
graphs that closely match the originals, which encourages
the graph encoder to learn better graph-level representation
vectors.

On the other hand, the contrastive loss is designed to min-
imize the difference between the two reconstructed graphs
derived from the same propagation graph. This is achieved
by minimizing the cosine similarity between reconstructed
features X ′

1 and X ′
2:

Lcon =
X ′

1 ·X ′
2

∥X ′
1∥∥X ′

2∥
. (7)

By minimizing this loss, the model is encouraged to gen-
erate similar representations for one augmented graph.

The overall loss function is then a weighted sum of the
reconstruction loss and the contrastive loss:

L = Lrec− αLcon, (8)

where α is the hyperparameter that controls the balance be-
tween the two loss components.

By minimizing this overall loss, our model is trained to
generate robust and discriminative graph-level representa-
tions that can be effectively used for the task of fake news
detection.

Experiments
In this section, we validate the effectiveness of the proposed
GAMC method by comparing it with some benchmark mod-
els on public datasets. Following this, to analyze and validate
the necessity of each component in GAMC, we conduct ab-
lation studies. Finally, we investigate the impact of different
parameter values within GAMC on the experimental results.

Datasets and Settings
Datasets To validate the efficiency of GAMC, we car-
ried out evaluations on the FakeNewsNet, a published data
source for fake news detection (Shu et al. 2020). This repos-
itory is divided into two sub-datasets, PolitiFact and Gossip-
Cop. The PolitiFact dataset primarily consists of news re-
lated to U.S. politics, while GossipCop is primarily focused
on news about Hollywood celebrities. The social context in
these two datasets includes the propagation network of news
and the history of user comments. Table 1 provides compre-
hensive statistics of the PolitiFact and GossipCop datasets.

Table 1: Statistics of the datasets. In the two datasets, each
graph denotes a piece of news.

Dataset PolitiFact GossipCop

#News 314 5464
#True News 157 2732
#Fake News 157 2732

#Nodes 41054 314262
#Edges 40740 308798

Baselines We have conducted a comparison of the pro-
posed method GAMC with the following unsupervised
methods:

• TruthFinder (Yin, Han, and Yu 2008) is one of the ear-
liest methods for detecting fake news using an unsuper-
vised approach. This method employs an iterative pro-
cess to determine the veracity of news by assessing the
credibility of the source websites from which the news
originates.

• UFD (Yang et al. 2019) employs a Bayesian network
model and an efficient collapsed Gibbs sampling tech-
nique. This method leverages users’ engagements on
social media to understand their opinions regarding
news authenticity, capturing the conditional dependen-
cies among the truths of news, users’ opinions, and users’
credibility.

• GTUT (Gangireddy et al. 2020) is a graph-based method
for fake news detection that identifies a seed set of ar-
ticles, and then progressively labels all articles in the
dataset.

• UFNDA (Li et al. 2021a) is an unsupervised fake news
detection approach. Utilizing a combination of a Bidirec-
tional GRU (Bi-GRU) layer and self-attention within an
autoencoder, the method uncovers hidden relationships
between features to detect fake news.

• (UMD)2 (Silva et al. 2023) is an unsupervised fake news
detection framework that encodes multi-modal knowl-
edge into low-dimensional vectors. This method lever-
ages a teacher-student architecture to determine the truth-
fulness of news by aligning various modalities, then uses
them as guiding signals for veracity assessment.

Additionally, we also conducted comparisons with the
following classical supervised methods:

• SAFE (Zhou, Wu, and Zafarani 2020) is a multimodal
method for fake news detection. It converts images in the
news into text, learns the latent representation of text and
visual information, then measures the similarity between
them to detect fake news.

• EANN (Wang et al. 2018) is a multi-modal approach for
detecting fake news. It extracts text and image features
from news content, and then incorporates an event dis-
criminator using adversarial learning to obtain the event-
invariant features of fake news.

• BiGCN (Bian et al. 2020) learns high-order structural
representations from the rumor propagation and dissem-
ination process, while considering the influence of root
features, and achieves good performance in rumor detec-
tion tasks.

• GACL (Sun et al. 2022) leverages contrastive learning
within the loss function to learn the difference between
positive and negative samples, and an Adversarial Fea-
ture Transform (AFT) module to generate conflicting
samples. This approach enhances the model’s ability to
distinguish event-invariant features, contributing to more
robust and efficient fake news detection.



Parameter Settings The experiments were conducted on
a server equipped with an Intel(R) Xeon(R) Gold 6326 CPU
@ 2.90GHz and a GeForce RTX 3090Ti graphics card. The
server has 24G of video memory and runs on the Ubuntu
16.04 operating system. We implement the proposed GAMC
model using PyTorch. We use accuracy, F1 score, precision,
and recall as our evaluation metrics across both datasets.
During the data augmentation process, we mask 50% of
the node features and apply dropout to 20% of the edges.
The node features are represented in 768-dimensional space,
while the intermediate layer vectors produced by the en-
coder have a dimensionality of 512. The training procedure
consists of 80 epochs, with the Adam optimization algorithm
employed to optimize the model. The hyperparameter that
controls the balance between the two loss components is set
to 0.1. Upon completion of training, we use a Support Vec-
tor Machine (SVM) classifier to predict labels, leveraging
the graph-level vectors learned by the graph encoder. For the
experimental results, we run ten times and take the average
values.

Overall Performance
Table 2 and Table 3 respectively display the performance of
the proposed GAMC method and the unsupervised methods.
From the results, compared to existing unsupervised meth-
ods, GAMC demonstrates noticeable improvements across
all four metrics on the two datasets. Specifically, the accu-
racy on the PolitiFact dataset increased by 3.24%, and on the
Gossipcop dataset, it rose by 18.81%. This improvement can
be attributed to GAMC’s unique design, which leverages a
graph autoencoder with masking and contrast. The approach
harnesses both the context and content of news propagation,
thereby providing a more holistic and accurate representa-
tion. Additionally, the composite loss function, combining
reconstruction error loss and contrast loss, ensures not only
that the latent features of the propagation graph are accu-
rately captured but also that the representations of the aug-
mented graphs are closely aligned.

Table 2: Results of GAMC, compared with unsupervised
methods on the PolitiFact dataset. We underline the subopti-
mal results and bold the top results.

Methods ACC. Prec. Rec. F1.

TruthFinder 0.581 0.572 0.576 0.573
UFNDA 0.685 0.667 0.659 0.670

UFD 0.697 0.652 0.641 0.647
GTUT 0.776 0.782 0.758 0.767
(UMD)2 0.802 0.795 0.748 0.761

GAMC 0.828 0.825 0.817 0.823
variance ±0.014 ±0.007 ±0.012 ±0.011

Table 4 shows the performance of the proposed GAMC
and the supervised methods. Compared with Tables 2 and
3, we can observe that supervised methods tend to outper-

Table 3: Results of GAMC, compared with unsupervised
methods on the GossipCop dataset.

Methods ACC. Prec. Rec. F1.

TruthFinder 0.668 0.669 0.672 0.669
UFNDA 0.692 0.687 0.662 0.673

UFD 0.662 0.687 0.654 0.667
GTUT 0.771 0.770 0.731 0.744
(UMD)2 0.792 0.779 0.788 0.783

GAMC 0.941 0.935 0.940 0.937
variance ±0.004 ±0.004 ±0.003 ±0.005

Table 4: Results of GAMC, compared with supervised meth-
ods on PolitiFact and GossipCop datasets.

Dataset
PolitiFact GossipCop

Acc. F1. Acc. F1.
SAFE 0.793 0.775 0.832 0.811
EANN 0.804 0.798 0.836 0.813
BiGCN 0.823 0.822 0.951 0.951
GACL 0.867 0.866 0.907 0.905
GAMC 0.828 0.823 0.941 0.937

form unsupervised methods. This is primarily attributable
to supervised methods taking advantage of the specific la-
bel information provided in training datasets, enabling these
models to learn more distinctive and discriminative patterns
associated with fake news.

As can be seen in Table 4, on the PolitiFact and Gossip-
cop datasets, the methods based on news propagation graphs
(BiGCN and GACL) perform better than those based on
news content (SAFE and EANN). This is due to the rich con-
textual information embedded within propagation graphs.
These methods effectively capture the complex interconnec-
tions and behavioral patterns involved in news propagation.
In contrast, methods exclusively focused on news content
could potentially overlook these significant contextual sig-
nals. Additionally, our unsupervised method GAMC demon-
strates superior performance over the classic content-based
supervised algorithms, achieving an accuracy improvement
of 2.99% and 12.56%, respectively. Compared to classic
graph-based supervised algorithms, our method shows a mi-
nor decrease in accuracy by 4.71% and 1.06%. However,
in real-world scenarios where labeled data may be scarce
or costly to obtain, our GAMC method offers an effective
alternative. Furthermore, this unsupervised model opens up
new possibilities for continual, on-the-fly fake news detec-
tion as it can easily adapt to changing data landscapes. As
such, the GAMC model not only competes with supervised
methods but also provides additional flexibility and cost-
effectiveness, making it a robust solution for the challenge
of fake news detection.



Ablation Study
To further elucidate the importance of each component in
our proposed GAMC model, we conduct an ablation study
in this section. This analysis aims to evaluate the contribu-
tion of individual modules by iteratively removing them and
observing the effect on the model’s performance. We com-
pare GAMC with its various sub-models:

• GMAC-Aug removes the data augmentation, including
node feature masking and edge dropping.

• GAMC-Lrec removes the reconstruction loss, and only
depends on the contrastive loss to optimize the model.

• GAMC-Lcon removes the contrastive loss while gener-
ating only one augmented graph from the propagation
graph.

The comparative results of these various sub-models are vi-
sually summarized in Table 5. From the results, it can be
observed that:

Removing data augmentation (GAMC-Aug) led to a de-
crease in accuracy, indicating the importance of this feature
in capturing the intricacies of news propagation. Data aug-
mentation in GAMC is instrumental in increasing the au-
toencoder’s feature reconstruction ability. The absence of
reconstruction loss (GAMC-Lrec) made a noticeable differ-
ence in performance, weakening the model’s ability to ac-
curately regenerate the original graph structure. The con-
trastive loss helps the model to recognize similarities and
differences between different instances, enhancing its dis-
crimination power. By generating only one augmented graph
(GAMC-Lcon), the model loses the capability to contrast be-
tween various augmented views of the data. In conclusion,
each component of the GAMC model plays a critical role in
ensuring optimal performance.

Table 5: Results of sub-models of GAMC on PolitiFact and
GossipCop datasets.

Dataset
PolitiFact GossipCop

Acc. F1. Acc. F1.
GAMC-Aug 0.793 0.791 0.905 0.894
GAMC-Lrec 0.763 0.758 0.889 0.876
GAMC-Lcon 0.808 0.793 0.924 0.915

GAMC 0.828 0.823 0.941 0.937

Parameter Discussion
To ensure that our proposed GAMC model achieves optimal
performance, an investigation and analysis of the parame-
ters was conducted in this section. The mask rate λ and edge
drop rate γ stand out as vital tunable parameters, impacting
the model’s capacity to understand and process the under-
lying data structure. For comprehensive insights into their
influence, we conduct a series of experiments using both
rates varying between 0.1 to 0.9 to encapsulate their entire
effective range. Figure 3 shows that when the mask rate is
set to 0.5 and the edge drop rate set to 0.2 the result is the
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Figure 3: Parameter analysis for λ and γ in GAMC. (a)
shows the results on PolitiFact, and (b) shows the results on
Gossipcop.

best. At a high mask rate, a substantial portion of node in-
formation becomes occluded. This leads to the model losing
critical information, making it harder to discern patterns and
structures essential for its tasks. Samely, a high edge drop-
ping disrupts the inherent structure and connectivity of the
original graph. It makes the graph too sparse, thereby losing
significant relational data between nodes. On the other hand,
the low mask and edge drop rate might not provide enough
reconstruction clues.

Conclusion
In this study, we introduced GAMC, a novel unsupervised
approach to fake news detection. By executing data aug-
mentations like node feature masking and edge dropping, we
engender enhanced graphs. Subsequently, we implemented
a graph encoding and decoding strategy. Furthermore, the
devised composite loss function, including both the recon-
struction error loss and the contrast loss, optimally syner-
gizes these components. The reconstruction error loss facil-
itates the reconstruction of the original graph from its rep-
resentation vector, thereby strengthening the model’s grasp
over latent news propagation patterns. The contrast loss fa-
cilitates the aligning representations of augmented graphs
from the same original graph. Experiments validate that our
GAMC method manifests effectively in fake news detec-
tion, eliminating the need for extensive labeled datasets, and
also beneficial for real-world deployments. In the future, our
research will consider multi-modal data sources for even
richer representations, and enhance the transparency and in-
terpretability of the model decisions.
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